Papers
Topics
Authors
Recent
2000 character limit reached

Convergence for adaptive resampling of random Fourier features (2509.03151v1)

Published 3 Sep 2025 in math.NA, cs.NA, and stat.ML

Abstract: The machine learning random Fourier feature method for data in high dimension is computationally and theoretically attractive since the optimization is based on a convex standard least squares problem and independent sampling of Fourier frequencies. The challenge is to sample the Fourier frequencies well. This work proves convergence of a data adaptive method based on resampling the frequencies asymptotically optimally, as the number of nodes and amount of data tend to infinity. Numerical results based on resampling and adaptive random walk steps together with approximations of the least squares problem by conjugate gradient iterations confirm the analysis for regression and classification problems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 11 likes about this paper.