Papers
Topics
Authors
Recent
2000 character limit reached

Kangaroo: A Private and Amortized Inference Framework over WAN for Large-Scale Decision Tree Evaluation (2509.03123v1)

Published 3 Sep 2025 in cs.CR

Abstract: With the rapid adoption of Models-as-a-Service, concerns about data and model privacy have become increasingly critical. To solve these problems, various privacy-preserving inference schemes have been proposed. In particular, due to the efficiency and interpretability of decision trees, private decision tree evaluation (PDTE) has garnered significant attention. However, existing PDTE schemes suffer from significant limitations: their communication and computation costs scale with the number of trees, the number of nodes, or the tree depth, which makes them inefficient for large-scale models, especially over WAN networks. To address these issues, we propose Kangaroo, a private and amortized decision tree inference framework build upon packed homomorphic encryption. Specifically, we design a novel model hiding and encoding scheme, together with secure feature selection, oblivious comparison, and secure path evaluation protocols, enabling full amortization of the overhead as the number of nodes or trees scales. Furthermore, we enhance the performance and functionality of the framework through optimizations, including same-sharing-for-same-model, latency-aware, and adaptive encoding adjustment strategies. Kangaroo achieves a $14\times$ to $59\times$ performance improvement over state-of-the-art (SOTA) one-round interactive schemes in WAN environments. For large-scale decision tree inference tasks, it delivers a $3\times$ to $44\times$ speedup compared to existing schemes. Notably, Kangaroo enables the evaluation of a random forest with $969$ trees and $411825$ nodes in approximately $60$ ms per tree (amortized) under WAN environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.