Papers
Topics
Authors
Recent
2000 character limit reached

Advancing Minority Stress Detection with Transformers: Insights from the Social Media Datasets (2509.02908v1)

Published 3 Sep 2025 in cs.CL

Abstract: Individuals from sexual and gender minority groups experience disproportionately high rates of poor health outcomes and mental disorders compared to their heterosexual and cisgender counterparts, largely as a consequence of minority stress as described by Meyer's (2003) model. This study presents the first comprehensive evaluation of transformer-based architectures for detecting minority stress in online discourse. We benchmark multiple transformer models including ELECTRA, BERT, RoBERTa, and BART against traditional machine learning baselines and graph-augmented variants. We further assess zero-shot and few-shot learning paradigms to assess their applicability on underrepresented datasets. Experiments are conducted on the two largest publicly available Reddit corpora for minority stress detection, comprising 12,645 and 5,789 posts, and are repeated over five random seeds to ensure robustness. Our results demonstrate that integrating graph structure consistently improves detection performance across transformer-only models and that supervised fine-tuning with relational context outperforms zero and few-shot approaches. Theoretical analysis reveals that modeling social connectivity and conversational context via graph augmentation sharpens the models' ability to identify key linguistic markers such as identity concealment, internalized stigma, and calls for support, suggesting that graph-enhanced transformers offer the most reliable foundation for digital health interventions and public health policy.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.