Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalizable Skill Learning for Construction Robots with Crowdsourced Natural Language Instructions, Composable Skills Standardization, and Large Language Model (2509.02876v1)

Published 2 Sep 2025 in cs.RO

Abstract: The quasi-repetitive nature of construction work and the resulting lack of generalizability in programming construction robots presents persistent challenges to the broad adoption of robots in the construction industry. Robots cannot achieve generalist capabilities as skills learnt from one domain cannot readily transfer to another work domain or be directly used to perform a different set of tasks. Human workers have to arduously reprogram their scene-understanding, path-planning, and manipulation components to enable the robots to perform alternate work tasks. The methods presented in this paper resolve a significant proportion of such reprogramming workload by proposing a generalizable learning architecture that directly teaches robots versatile task-performance skills through crowdsourced online natural language instructions. A LLM, a standardized and modularized hierarchical modeling approach, and Building Information Modeling-Robot sematic data pipeline are developed to address the multi-task skill transfer problem. The proposed skill standardization scheme and LLM-based hierarchical skill learning framework were tested with a long-horizon drywall installation experiment using a full-scale industrial robotic manipulator. The resulting robot task learning scheme achieves multi-task reprogramming with minimal effort and high quality.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.