Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Power Grid Control with Graph-Based Distributed Reinforcement Learning (2509.02861v1)

Published 2 Sep 2025 in cs.LG

Abstract: The necessary integration of renewable energy sources, combined with the expanding scale of power networks, presents significant challenges in controlling modern power grids. Traditional control systems, which are human and optimization-based, struggle to adapt and to scale in such an evolving context, motivating the exploration of more dynamic and distributed control strategies. This work advances a graph-based distributed reinforcement learning framework for real-time, scalable grid management. The proposed architecture consists of a network of distributed low-level agents acting on individual power lines and coordinated by a high-level manager agent. A Graph Neural Network (GNN) is employed to encode the network's topological information within the single low-level agent's observation. To accelerate convergence and enhance learning stability, the framework integrates imitation learning and potential-based reward shaping. In contrast to conventional decentralized approaches that decompose only the action space while relying on global observations, this method also decomposes the observation space. Each low-level agent acts based on a structured and informative local view of the environment constructed through the GNN. Experiments on the Grid2Op simulation environment show the effectiveness of the approach, which consistently outperforms the standard baseline commonly adopted in the field. Additionally, the proposed model proves to be much more computationally efficient than the simulation-based Expert method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: