Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast and Accurate SVD-Type Updating in Streaming Data (2509.02840v1)

Published 2 Sep 2025 in math.NA, cs.LG, cs.MS, and cs.NA

Abstract: For a datastream, the change over a short interval is often of low rank. For high throughput information arranged in matrix format, recomputing an optimal SVD approximation after each step is typically prohibitive. Instead, incremental and truncated updating strategies are used, which may not scale for large truncation ranks. Therefore, we propose a set of efficient new algorithms that update a bidiagonal factorization, and which are similarly accurate as the SVD methods. In particular, we develop a compact Householder-type algorithm that decouples a sparse part from a low-rank update and has about half the memory requirements of standard bidiagonalization methods. A second algorithm based on Givens rotations has only about 10 flops per rotation and scales quadratically with the problem size, compared to a typical cubic scaling. The algorithm is therefore effective for processing high-throughput updates, as we demonstrate in tracking large subspaces of recommendation systems and networks, and when compared to well known software such as LAPACK or the incremental SVD.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: