Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Multi-Embodiment Locomotion at Scale with extreme Embodiment Randomization (2509.02815v1)

Published 2 Sep 2025 in cs.RO and cs.LG

Abstract: We present a single, general locomotion policy trained on a diverse collection of 50 legged robots. By combining an improved embodiment-aware architecture (URMAv2) with a performance-based curriculum for extreme Embodiment Randomization, our policy learns to control millions of morphological variations. Our policy achieves zero-shot transfer to unseen real-world humanoid and quadruped robots.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 490 likes.

Upgrade to Pro to view all of the tweets about this paper: