Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Synthetic Founders: AI-Generated Social Simulations for Startup Validation Research in Computational Social Science (2509.02605v1)

Published 29 Aug 2025 in cs.MA, cs.AI, and cs.CY

Abstract: We present a comparative docking experiment that aligns human-subject interview data with LLM-driven synthetic personas to evaluate fidelity, divergence, and blind spots in AI-enabled simulation. Fifteen early-stage startup founders were interviewed about their hopes and concerns regarding AI-powered validation, and the same protocol was replicated with AI-generated founder and investor personas. A structured thematic synthesis revealed four categories of outcomes: (1) Convergent themes - commitment-based demand signals, black-box trust barriers, and efficiency gains were consistently emphasized across both datasets; (2) Partial overlaps - founders worried about outliers being averaged away and the stress of real customer validation, while synthetic personas highlighted irrational blind spots and framed AI as a psychological buffer; (3) Human-only themes - relational and advocacy value from early customer engagement and skepticism toward moonshot markets; and (4) Synthetic-only themes - amplified false positives and trauma blind spots, where AI may overstate adoption potential by missing negative historical experiences. We interpret this comparative framework as evidence that LLM-driven personas constitute a form of hybrid social simulation: more linguistically expressive and adaptable than traditional rule-based agents, yet bounded by the absence of lived history and relational consequence. Rather than replacing empirical studies, we argue they function as a complementary simulation category - capable of extending hypothesis space, accelerating exploratory validation, and clarifying the boundaries of cognitive realism in computational social science.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.