Foundation Model-Driven Classification of Atypical Mitotic Figures with Domain-Aware Training Strategies (2509.02601v1)
Abstract: We present a solution for the MIDOG 2025 Challenge Track~2, addressing binary classification of normal mitotic figures (NMFs) versus atypical mitotic figures (AMFs). The approach leverages pathology-specific foundation model H-optimus-0, selected based on recent cross-domain generalization benchmarks and our empirical testing, with Low-Rank Adaptation (LoRA) fine-tuning and MixUp augmentation. Implementation includes soft labels based on multi-expert consensus, hard negative mining, and adaptive focal loss, metric learning and domain adaptation. The method demonstrates both the promise and challenges of applying foundation models to this complex classification task, achieving reasonable performance in the preliminary evaluation phase.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.