Papers
Topics
Authors
Recent
2000 character limit reached

Pan-Cancer mitotic figures detection and domain generalization: MIDOG 2025 Challenge (2509.02585v1)

Published 28 Aug 2025 in eess.IV and cs.CV

Abstract: This report details our submission to the Mitotic Domain Generalization (MIDOG) 2025 challenge, which addresses the critical task of mitotic figure detection in histopathology for cancer prognostication. Following the "Bitter Lesson"\cite{sutton2019bitterlesson} principle that emphasizes data scale over algorithmic novelty, we have publicly released two new datasets to bolster training data for both conventional \cite{Shen2024framework} and atypical mitoses \cite{shen_2025_16780587}. Besides, we implement up-to-date training methodologies for both track and reach a Track-1 F1-Score of 0.8407 on our test set, as well as a Track-2 balanced accuracy of 0.9107 for atypical mitotic cell classification.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: