Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Gaussian Process Regression of Steering Vectors With Physics-Aware Deep Composite Kernels for Augmented Listening (2509.02571v1)

Published 20 Aug 2025 in eess.AS, cs.LG, cs.SD, and eess.SP

Abstract: This paper investigates continuous representations of steering vectors over frequency and position of microphone and source for augmented listening (e.g., spatial filtering and binaural rendering) with precise control of the sound field perceived by the user. Steering vectors have typically been used for representing the spatial characteristics of the sound field as a function of the listening position. The basic algebraic representation of steering vectors assuming an idealized environment cannot deal with the scattering effect of the sound field. One may thus collect a discrete set of real steering vectors measured in dedicated facilities and super-resolve (i.e., upsample) them. Recently, physics-aware deep learning methods have been effectively used for this purpose. Such deterministic super-resolution, however, suffers from the overfitting problem due to the non-uniform uncertainty over the measurement space. To solve this problem, we integrate an expressive representation based on the neural field (NF) into the principled probabilistic framework based on the Gaussian process (GP). Specifically, we propose a physics-aware composite kernel that model the directional incoming waves and the subsequent scattering effect. Our comprehensive comparative experiment showed the effectiveness of the proposed method under data insufficiency conditions. In downstream tasks such as speech enhancement and binaural rendering using the simulated data of the SPEAR challenge, the oracle performances were attained with less than ten times fewer measurements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: