Papers
Topics
Authors
Recent
2000 character limit reached

Surrogate Benchmarks for Model Merging Optimization (2509.02555v1)

Published 2 Sep 2025 in cs.LG, cs.AI, and cs.NE

Abstract: Model merging techniques aim to integrate the abilities of multiple models into a single model. Most model merging techniques have hyperparameters, and their setting affects the performance of the merged model. Because several existing works show that tuning hyperparameters in model merging can enhance the merging outcome, developing hyperparameter optimization algorithms for model merging is a promising direction. However, its optimization process is computationally expensive, particularly in merging LLMs. In this work, we develop surrogate benchmarks for optimization of the merging hyperparameters to realize algorithm development and performance comparison at low cost. We define two search spaces and collect data samples to construct surrogate models to predict the performance of a merged model from a hyperparameter. We demonstrate that our benchmarks can predict the performance of merged models well and simulate optimization algorithm behaviors.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.