Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Transferring, Merging, and Splitting Task-Oriented Network Digital Twins (2509.02551v1)

Published 2 Sep 2025 in cs.NI and cs.LG

Abstract: The integration of digital twinning technologies is driving next-generation networks toward new capabilities, allowing operators to thoroughly understand network conditions, efficiently analyze valuable radio data, and innovate applications through user-friendly, immersive interfaces. Building on this foundation, network digital twins (NDTs) accurately depict the operational processes and attributes of network infrastructures, facilitating predictive management through real-time analysis and measurement. However, constructing precise NDTs poses challenges, such as integrating diverse data sources, mapping necessary attributes from physical networks, and maintaining scalability for various downstream tasks. Unlike previous works that focused on the creation and mapping of NDTs from scratch, we explore intra- and inter-operations among NDTs within a Unified Twin Transformation (UTT) framework, which uncovers a new computing paradigm for efficient transfer, merging, and splitting of NDTs to create task-oriented twins. By leveraging joint multi-modal and distributed mapping mechanisms, UTT optimizes resource utilization and reduces the cost of creating NDTs, while ensuring twin model consistency. A theoretical analysis of the distributed mapping problem is conducted to establish convergence bounds for this multi-modal gated aggregation process. Evaluations on real-world twin-assisted applications, such as trajectory reconstruction, human localization, and sensory data generation, demonstrate the feasibility and effectiveness of interoperability among NDTs for corresponding task development.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.