Papers
Topics
Authors
Recent
2000 character limit reached

Generative Sequential Notification Optimization via Multi-Objective Decision Transformers (2509.02458v1)

Published 2 Sep 2025 in cs.LG and cs.AI

Abstract: Notifications are an important communication channel for delivering timely and relevant information. Optimizing their delivery involves addressing complex sequential decision-making challenges under constraints such as message utility and user fatigue. Offline reinforcement learning (RL) methods, such as Conservative Q-Learning (CQL), have been applied to this problem but face practical challenges at scale, including instability, sensitivity to distribution shifts, limited reproducibility, and difficulties with explainability in high-dimensional recommendation settings. We present a Decision Transformer (DT) based framework that reframes policy learning as return-conditioned supervised learning, improving robustness, scalability, and modeling flexibility. Our contributions include a real-world comparison with CQL, a multi-reward design suitable for non-episodic tasks, a quantile regression approach to return-to-go conditioning, and a production-ready system with circular buffer-based sequence processing for near-real-time inference. Extensive offline and online experiments in a deployed notification system show that our approach improves notification utility and overall session activity while minimizing user fatigue. Compared to a multi-objective CQL-based agent, the DT-based approach achieved a +0.72% increase in sessions for notification decision-making at LinkedIn by making notification recommendation more relevant.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.