Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

When Agents go Astray: Course-Correcting SWE Agents with PRMs (2509.02360v1)

Published 2 Sep 2025 in cs.AI and cs.SE

Abstract: LLM agents are increasingly deployed for complex, multi-step software engineering (SWE) tasks. However, their trajectories often contain costly inefficiencies, such as redundant exploration, looping, and failure to terminate once a solution is reached. Prior work has largely treated these errors in a post-hoc manner, diagnosing failures only after execution. In this paper, we introduce SWE-PRM, an inference-time Process Reward Model (PRM) that intervenes during execution to detect and course-correct trajectory-level errors. Our PRM design leverages a taxonomy of common inefficiencies and delivers lightweight, interpretable feedback without modifying the underlying policy. On SWE-bench Verified, closed-source PRMs improve resolution from 40.0% to 50.6% (+10.6 p.p.), with the largest gains on medium and hard tasks. Among feedback strategies, taxonomy-guided PRMs outperform unguided or explicit action-prescriptive variants, increasing success rate while reducing trajectory length. These benefits come at an acceptable added inference cost of as low as $0.2, making PRMs a practical and scalable mechanism for improving SWE agents' reliability and efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 6 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube