Papers
Topics
Authors
Recent
2000 character limit reached

RDIT: Residual-based Diffusion Implicit Models for Probabilistic Time Series Forecasting (2509.02341v1)

Published 2 Sep 2025 in cs.LG and cs.AI

Abstract: Probabilistic Time Series Forecasting (PTSF) plays a critical role in domains requiring accurate and uncertainty-aware predictions for decision-making. However, existing methods offer suboptimal distribution modeling and suffer from a mismatch between training and evaluation metrics. Surprisingly, we found that augmenting a strong point estimator with a zero-mean Gaussian, whose standard deviation matches its training error, can yield state-of-the-art performance in PTSF. In this work, we propose RDIT, a plug-and-play framework that combines point estimation and residual-based conditional diffusion with a bidirectional Mamba network. We theoretically prove that the Continuous Ranked Probability Score (CRPS) can be minimized by adjusting to an optimal standard deviation and then derive algorithms to achieve distribution matching. Evaluations on eight multivariate datasets across varied forecasting horizons demonstrate that RDIT achieves lower CRPS, rapid inference, and improved coverage compared to strong baselines.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.