Papers
Topics
Authors
Recent
2000 character limit reached

Extrapolated Markov Chain Oversampling Method for Imbalanced Text Classification (2509.02332v1)

Published 2 Sep 2025 in cs.LG

Abstract: Text classification is the task of automatically assigning text documents correct labels from a predefined set of categories. In real-life (text) classification tasks, observations and misclassification costs are often unevenly distributed between the classes - known as the problem of imbalanced data. Synthetic oversampling is a popular approach to imbalanced classification. The idea is to generate synthetic observations in the minority class to balance the classes in the training set. Many general-purpose oversampling methods can be applied to text data; however, imbalanced text data poses a number of distinctive difficulties that stem from the unique nature of text compared to other domains. One such factor is that when the sample size of text increases, the sample vocabulary (i.e., feature space) is likely to grow as well. We introduce a novel Markov chain based text oversampling method. The transition probabilities are estimated from the minority class but also partly from the majority class, thus allowing the minority feature space to expand in oversampling. We evaluate our approach against prominent oversampling methods and show that our approach is able to produce highly competitive results against the other methods in several real data examples, especially when the imbalance is severe.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.