Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On integral extensions between the abelianization functor and its symmetric powers (2509.02105v1)

Published 2 Sep 2025 in math.AT

Abstract: This paper aims to study Ext-groups between certain functors defined on the category of finitely generated free groups. Rational Ext-groups between the abelianization functor and its symmetric powers are known, and are almost always equal to zero. Recently, using homotopical methods, Arone constructed an explicit bounded complex whose homology corresponds to the integral Ext-groups between the abelianization functor and its symmetric powers. The homology of this complex is far from being trivial. Using this complex, we explicitly calculate some of these Ext-groups. More precisely, we compute Ext1, Ext2, Ext{d-1} and Ext{d-2} between the abelianization functor and its dth symmetric power. We further explain how Arone's complex can be obtained from an explicit projective resolution of the abelianization functor. We compare our results with the computation of Ext-groups between functors from finitely generated free abelian groups, obtained by Franjou and Pirashvili. In particular, we obtain that the composition with the abelianization functor induces an isomorphism for the Ext1 considered in this paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube