DeepSeek performs better than other Large Language Models in Dental Cases (2509.02036v1)
Abstract: LLMs hold transformative potential in healthcare, yet their capacity to interpret longitudinal patient narratives remains inadequately explored. Dentistry, with its rich repository of structured clinical data, presents a unique opportunity to rigorously assess LLMs' reasoning abilities. While several commercial LLMs already exist, DeepSeek, a model that gained significant attention earlier this year, has also joined the competition. This study evaluated four state-of-the-art LLMs (GPT-4o, Gemini 2.0 Flash, Copilot, and DeepSeek V3) on their ability to analyze longitudinal dental case vignettes through open-ended clinical tasks. Using 34 standardized longitudinal periodontal cases (comprising 258 question-answer pairs), we assessed model performance via automated metrics and blinded evaluations by licensed dentists. DeepSeek emerged as the top performer, demonstrating superior faithfulness (median score = 0.528 vs. 0.367-0.457) and higher expert ratings (median = 4.5/5 vs. 4.0/5), without significantly compromising readability. Our study positions DeepSeek as the leading LLM for case analysis, endorses its integration as an adjunct tool in both medical education and research, and highlights its potential as a domain-specific agent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.