Papers
Topics
Authors
Recent
2000 character limit reached

StructCoh: Structured Contrastive Learning for Context-Aware Text Semantic Matching (2509.02033v1)

Published 2 Sep 2025 in cs.CL

Abstract: Text semantic matching requires nuanced understanding of both structural relationships and fine-grained semantic distinctions. While pre-trained LLMs excel at capturing token-level interactions, they often overlook hierarchical structural patterns and struggle with subtle semantic discrimination. In this paper, we proposed StructCoh, a graph-enhanced contrastive learning framework that synergistically combines structural reasoning with representation space optimization. Our approach features two key innovations: (1) A dual-graph encoder constructs semantic graphs via dependency parsing and topic modeling, then employs graph isomorphism networks to propagate structural features across syntactic dependencies and cross-document concept nodes. (2) A hierarchical contrastive objective enforces consistency at multiple granularities: node-level contrastive regularization preserves core semantic units, while graph-aware contrastive learning aligns inter-document structural semantics through both explicit and implicit negative sampling strategies. Experiments on three legal document matching benchmarks and academic plagiarism detection datasets demonstrate significant improvements over state-of-the-art methods. Notably, StructCoh achieves 86.7% F1-score (+6.2% absolute gain) on legal statute matching by effectively identifying argument structure similarities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.