Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vision-Based Embedded System for Noncontact Monitoring of Preterm Infant Behavior in Low-Resource Care Settings (2509.02018v1)

Published 2 Sep 2025 in cs.CV, cs.CY, and cs.LG

Abstract: Preterm birth remains a leading cause of neonatal mortality, disproportionately affecting low-resource settings with limited access to advanced neonatal intensive care units (NICUs).Continuous monitoring of infant behavior, such as sleep/awake states and crying episodes, is critical but relies on manual observation or invasive sensors, which are prone to error, impractical, and can cause skin damage. This paper presents a novel, noninvasive, and automated vision-based framework to address this gap. We introduce an embedded monitoring system that utilizes a quantized MobileNet model deployed on a Raspberry Pi for real-time behavioral state detection. When trained and evaluated on public neonatal image datasets, our system achieves state-of-the-art accuracy (91.8% for sleep detection and 97.7% for crying/normal classification) while maintaining computational efficiency suitable for edge deployment. Through comparative benchmarking, we provide a critical analysis of the trade-offs between model size, inference latency, and diagnostic accuracy. Our findings demonstrate that while larger architectures (e.g., ResNet152, VGG19) offer marginal gains in accuracy, their computational cost is prohibitive for real-time edge use. The proposed framework integrates three key innovations: model quantization for memory-efficient inference (68% reduction in size), Raspberry Pi-optimized vision pipelines, and secure IoT communication for clinical alerts. This work conclusively shows that lightweight, optimized models such as the MobileNet offer the most viable foundation for scalable, low-cost, and clinically actionable NICU monitoring systems, paving the way for improved preterm care in resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.