Papers
Topics
Authors
Recent
2000 character limit reached

MIRAGE: Multimodal Intention Recognition and Admittance-Guided Enhancement in VR-based Multi-object Teleoperation (2509.01996v1)

Published 2 Sep 2025 in cs.RO and cs.HC

Abstract: Effective human-robot interaction (HRI) in multi-object teleoperation tasks faces significant challenges due to perceptual ambiguities in virtual reality (VR) environments and the limitations of single-modality intention recognition. This paper proposes a shared control framework that combines a virtual admittance (VA) model with a Multimodal-CNN-based Human Intention Perception Network (MMIPN) to enhance teleoperation performance and user experience. The VA model employs artificial potential fields to guide operators toward target objects by adjusting admittance force and optimizing motion trajectories. MMIPN processes multimodal inputs, including gaze movement, robot motions, and environmental context, to estimate human grasping intentions, helping to overcome depth perception challenges in VR. Our user study evaluated four conditions across two factors, and the results showed that MMIPN significantly improved grasp success rates, while the VA model enhanced movement efficiency by reducing path lengths. Gaze data emerged as the most crucial input modality. These findings demonstrate the effectiveness of combining multimodal cues with implicit guidance in VR-based teleoperation, providing a robust solution for multi-object grasping tasks and enabling more natural interactions across various applications in the future.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.