Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Preserving Bilinear Weight Spectra with a Signed and Shrunk Quadratic Activation Function (2509.01874v1)

Published 2 Sep 2025 in cs.LG and cs.AI

Abstract: Understanding the inner workings of machine learning models is critical for ensuring their reliability and robustness. Whilst many techniques in mechanistic interpretability focus on activation driven analyses, being able to derive meaningful features directly from the weights of a neural network would provide greater guarantees and more computational efficiency. Existing techniques for analyzing model features through weights suffer from drawbacks such as reduced performance and data inefficiency. In this paper, we introduce Signed Quadratic Shrink (SQS), an activation function designed to allow Gated Linear Units (GLUs) to learn interpretable features without these drawbacks. Our experimental results show that SQS achieves performance competitive with state-of-the-art activation functions whilst enabling weight-based interpretability

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.