Constrained Decoding for Robotics Foundation Models (2509.01728v1)
Abstract: Recent advances in the development of robotic foundation models have led to promising end-to-end and general-purpose capabilities in robotic systems. These models are pretrained on vast datasets of robot trajectories to process multi-modal inputs and directly output a sequence of action that the system then executes in the real world. Although this approach is attractive from the perspective of improved generalization across diverse tasks, these models are still data-driven and, therefore, lack explicit notions of behavioral correctness and safety constraints. We address these limitations by introducing a constrained decoding framework for robotics foundation models that enforces logical constraints on action trajectories in dynamical systems. Our method ensures that generated actions provably satisfy signal temporal logic (STL) specifications at runtime without retraining, while remaining agnostic of the underlying foundation model. We perform comprehensive evaluation of our approach across state-of-the-art navigation foundation models and we show that our decoding-time interventions are useful not only for filtering unsafe actions but also for conditional action-generation. Videos available on our website: https://constrained-robot-fms.github.io
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.