Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Continuous-Time Consistency Model for 3D Point Cloud Generation (2509.01492v1)

Published 1 Sep 2025 in cs.CV

Abstract: Fast and accurate 3D shape generation from point clouds is essential for applications in robotics, AR/VR, and digital content creation. We introduce ConTiCoM-3D, a continuous-time consistency model that synthesizes 3D shapes directly in point space, without discretized diffusion steps, pre-trained teacher models, or latent-space encodings. The method integrates a TrigFlow-inspired continuous noise schedule with a Chamfer Distance-based geometric loss, enabling stable training on high-dimensional point sets while avoiding expensive Jacobian-vector products. This design supports efficient one- to two-step inference with high geometric fidelity. In contrast to previous approaches that rely on iterative denoising or latent decoders, ConTiCoM-3D employs a time-conditioned neural network operating entirely in continuous time, thereby achieving fast generation. Experiments on the ShapeNet benchmark show that ConTiCoM-3D matches or outperforms state-of-the-art diffusion and latent consistency models in both quality and efficiency, establishing it as a practical framework for scalable 3D shape generation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.