Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the interplay between prior weight and variance of the robustification component in Robust Mixture Prior Bayesian Dynamic Borrowing approach (2509.01435v1)

Published 1 Sep 2025 in stat.ME

Abstract: Robust Mixture Prior (RMP) is a popular Bayesian dynamic borrowing method, which combines an informative historical distribution with a less informative component (referred as robustification component) in a mixture prior to enhance the efficiency of hybrid-control randomized trials. Current practice typically focuses solely on the selection of the prior weight that governs the relative influence of these two components, often fixing the variance of the robustification component to that of a single observation. In this study we demonstrate that the performance of RMPs critically depends on the joint selection of both weight and variance of the robustification component. In particular, we show that a wide range of weight-variance pairs can yield practically identical posterior inferences (in particular regions of the parameter space) and that large variance robust components may be employed without incurring in the so called Lindley's paradox. We further show that the use of large variance robustification components leads to improved asymptotic Type I error control and enhanced robustness of the RMP to the specification of the location parameter of the robustification component. Finally, we leverage these theoretical results to propose a novel and practical hyper-parameter elicitation routine.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.