MixedG2P-T5: G2P-free Speech Synthesis for Mixed-script texts using Speech Self-Supervised Learning and Language Model (2509.01391v1)
Abstract: This study presents a novel approach to voice synthesis that can substitute the traditional grapheme-to-phoneme (G2P) conversion by using a deep learning-based model that generates discrete tokens directly from speech. Utilizing a pre-trained voice SSL model, we train a T5 encoder to produce pseudo-language labels from mixed-script texts (e.g., containing Kanji and Kana). This method eliminates the need for manual phonetic transcription, reducing costs and enhancing scalability, especially for large non-transcribed audio datasets. Our model matches the performance of conventional G2P-based text-to-speech systems and is capable of synthesizing speech that retains natural linguistic and paralinguistic features, such as accents and intonations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.