Papers
Topics
Authors
Recent
2000 character limit reached

Practical and Private Hybrid ML Inference with Fully Homomorphic Encryption (2509.01253v1)

Published 1 Sep 2025 in cs.CR and cs.LG

Abstract: In contemporary cloud-based services, protecting users' sensitive data and ensuring the confidentiality of the server's model are critical. Fully homomorphic encryption (FHE) enables inference directly on encrypted inputs, but its practicality is hindered by expensive bootstrapping and inefficient approximations of non-linear activations. We introduce Safhire, a hybrid inference framework that executes linear layers under encryption on the server while offloading non-linearities to the client in plaintext. This design eliminates bootstrapping, supports exact activations, and significantly reduces computation. To safeguard model confidentiality despite client access to intermediate outputs, Safhire applies randomized shuffling, which obfuscates intermediate values and makes it practically impossible to reconstruct the model. To further reduce latency, Safhire incorporates advanced optimizations such as fast ciphertext packing and partial extraction. Evaluations on multiple standard models and datasets show that Safhire achieves 1.5X - 10.5X lower inference latency than Orion, a state-of-the-art baseline, with manageable communication overhead and comparable accuracy, thereby establishing the practicality of hybrid FHE inference.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.