Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

ADMP-GNN: Adaptive Depth Message Passing GNN (2509.01170v1)

Published 1 Sep 2025 in cs.LG and stat.ML

Abstract: Graph Neural Networks (GNNs) have proven to be highly effective in various graph learning tasks. A key characteristic of GNNs is their use of a fixed number of message-passing steps for all nodes in the graph, regardless of each node's diverse computational needs and characteristics. Through empirical real-world data analysis, we demonstrate that the optimal number of message-passing layers varies for nodes with different characteristics. This finding is further supported by experiments conducted on synthetic datasets. To address this, we propose Adaptive Depth Message Passing GNN (ADMP-GNN), a novel framework that dynamically adjusts the number of message passing layers for each node, resulting in improved performance. This approach applies to any model that follows the message passing scheme. We evaluate ADMP-GNN on the node classification task and observe performance improvements over baseline GNN models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.