Papers
Topics
Authors
Recent
2000 character limit reached

Do Video Language Models Really Know Where to Look? Diagnosing Attention Failures in Video Language Models (2509.01167v1)

Published 1 Sep 2025 in cs.CV, cs.CL, and cs.LG

Abstract: Recent advances in multimodal LLMs (MLLMs) have led to much progress in video understanding tasks. To avoid the heavy computational cost of processing all frames, these models typically rely on keyframe sampling methods guided by vision-language encoders (\textit{e.g.,} SigLIP). However, it remains unclear whether such encoders can truly identify the most informative frames. In this work, we provide several empirical pieces of evidence revealing that popular vision encoders critically suffer from their limited capability to identify where the MLLM should look inside the video to handle the given textual query appropriately. Our findings suggest that the development of better keyframe identification techniques may be necessary for efficient video MLLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.