Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Neural Lévy SDE for State--Dependent Risk and Density Forecasting (2509.01041v1)

Published 1 Sep 2025 in q-fin.RM

Abstract: Financial returns are known to exhibit heavy tails, volatility clustering and abrupt jumps that are poorly captured by classical diffusion models. Advances in machine learning have enabled highly flexible functional forms for conditional means and volatilities, yet few models deliver interpretable state--dependent tail risk, capture multiple forecast horizons and yield distributions amenable to backtesting and execution. This paper proposes a neural L\'evy jump--diffusion framework that jointly learns, as functions of observable state variables, the conditional drift, diffusion, jump intensity and jump size distribution. We show how a single shared encoder yields multiple forecasting heads corresponding to distinct horizons (daily, weekly, etc.), facilitating multi--horizon density forecasts and risk measures. The state vector includes conventional price and volume features as well as novel complexity measures such as permutation entropy and recurrence quantification analysis determinism, which quantify predictability in the underlying process. Estimation is based on a quasi--maximum likelihood approach that separates diffusion and jump contributions via bipower variation weights and incorporates monotonicity and smoothness regularisation to ensure identifiability. A cost--aware portfolio optimiser translates the model's conditional densities into implementable trading strategies under leverage, turnover and no--trade--band constraints. Extensive empirical analyses on cross--sectional equity data demonstrate improved calibration, sharper tail control and economically significant risk reduction relative to baseline diffusive and GARCH benchmarks. The proposed framework is therefore an interpretable, testable and practically deployable method for state--dependent risk and density forecasting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube