Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analysis of Error Sources in LLM-based Hypothesis Search for Few-Shot Rule Induction

Published 31 Aug 2025 in cs.AI, cs.CL, cs.LG, and cs.NE | (2509.01016v1)

Abstract: Inductive reasoning enables humans to infer abstract rules from limited examples and apply them to novel situations. In this work, we compare an LLM-based hypothesis search framework with direct program generation approaches on few-shot rule induction tasks. Our findings show that hypothesis search achieves performance comparable to humans, while direct program generation falls notably behind. An error analysis reveals key bottlenecks in hypothesis generation and suggests directions for advancing program induction methods. Overall, this paper underscores the potential of LLM-based hypothesis search for modeling inductive reasoning and the challenges in building more efficient systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.