Papers
Topics
Authors
Recent
2000 character limit reached

DTRNet: Dynamic Token Routing Network to Reduce Quadratic Costs in Transformers (2509.00925v1)

Published 31 Aug 2025 in cs.LG and cs.CL

Abstract: Transformers achieve state-of-the-art results across many tasks, but their uniform application of quadratic self-attention to every token at every layer makes them computationally expensive. We introduce DTRNet (Dynamic Token Routing Network), an improved Transformer architecture that allows tokens to dynamically skip the quadratic cost of cross-token mixing while still receiving lightweight linear updates. By preserving the MLP module and reducing the attention cost for most tokens to linear, DTRNet ensures that every token is explicitly updated while significantly lowering overall computation. This design offers an efficient and effective alternative to standard dense attention. Once trained, DTRNet blocks routes only ~10% of tokens through attention at each layer while maintaining performance comparable to a full Transformer. It consistently outperforms routing-based layer skipping methods such as MoD and D-LLM in both accuracy and memory at matched FLOPs, while routing fewer tokens to full attention. Its efficiency gains, scales with sequence length, offering significant reduction in FLOPs for long-context inputs. By decoupling token updates from attention mixing, DTRNet substantially reduces the quadratic share of computation, providing a simple, efficient, and scalable alternative to Transformers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.