Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Robust Deep Monte Carlo Counterfactual Regret Minimization: Addressing Theoretical Risks in Neural Fictitious Self-Play (2509.00923v1)

Published 31 Aug 2025 in cs.AI, cs.GT, and stat.ML

Abstract: Monte Carlo Counterfactual Regret Minimization (MCCFR) has emerged as a cornerstone algorithm for solving extensive-form games, but its integration with deep neural networks introduces scale-dependent challenges that manifest differently across game complexities. This paper presents a comprehensive analysis of how neural MCCFR component effectiveness varies with game scale and proposes an adaptive framework for selective component deployment. We identify that theoretical risks such as nonstationary target distribution shifts, action support collapse, variance explosion, and warm-starting bias have scale-dependent manifestation patterns, requiring different mitigation strategies for small versus large games. Our proposed Robust Deep MCCFR framework incorporates target networks with delayed updates, uniform exploration mixing, variance-aware training objectives, and comprehensive diagnostic monitoring. Through systematic ablation studies on Kuhn and Leduc Poker, we demonstrate scale-dependent component effectiveness and identify critical component interactions. The best configuration achieves final exploitability of 0.0628 on Kuhn Poker, representing a 60% improvement over the classical framework (0.156). On the more complex Leduc Poker domain, selective component usage achieves exploitability of 0.2386, a 23.5% improvement over the classical framework (0.3703) and highlighting the importance of careful component selection over comprehensive mitigation. Our contributions include: (1) a formal theoretical analysis of risks in neural MCCFR, (2) a principled mitigation framework with convergence guarantees, (3) comprehensive multi-scale experimental validation revealing scale-dependent component interactions, and (4) practical guidelines for deployment in larger games.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.