Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Exploring and Mitigating Fawning Hallucinations in Large Language Models (2509.00869v1)

Published 31 Aug 2025 in cs.CL

Abstract: LLMs have demonstrated exceptional proficiency in language understanding. However, when LLMs align their outputs with deceptive and/or misleading prompts, the generated responses could deviate from the de facto information. Such observations are known as fawning hallucinations, where the model prioritizes alignment with the input's implied perspective over accuracy and truthfulness. In this work, we analyze fawning hallucinations in various natural language processing tasks and tailor the so-termed contrastive decoding method for fawning-hallucination mitigation. Specifically, we design two paradigms to generate corresponding deceptive and/or misleading inputs for the consistent fawning hallucinations induction. Then, we propose the collaborative contrastive decoding (CCD) to handle the fawning hallucinations across different tasks in LLMs. By contrasting the deviation in output distribution between induced and transformed neutral inputs, the proposed CCD can reduce reliance on deceptive and/or misleading information without requiring additional training. Extensive experiments demonstrate that the proposed CCD can effectively mitigate fawning hallucinations and improve the factuality of the generated responses over various tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.