Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Decomposing and Revising What Language Models Generate (2509.00765v1)

Published 31 Aug 2025 in cs.CL

Abstract: Attribution is crucial in question answering (QA) with LLMs.SOTA question decomposition-based approaches use long form answers to generate questions for retrieving related documents. However, the generated questions are often irrelevant and incomplete, resulting in a loss of facts in retrieval.These approaches also fail to aggregate evidence snippets from different documents and paragraphs. To tackle these problems, we propose a new fact decomposition-based framework called FIDES (\textit{faithful context enhanced fact decomposition and evidence aggregation}) for attributed QA. FIDES uses a contextually enhanced two-stage faithful decomposition method to decompose long form answers into sub-facts, which are then used by a retriever to retrieve related evidence snippets. If the retrieved evidence snippets conflict with the related sub-facts, such sub-facts will be revised accordingly. Finally, the evidence snippets are aggregated according to the original sentences.Extensive evaluation has been conducted with six datasets, with an additionally proposed new metric called $Attr_{auto-P}$ for evaluating the evidence precision. FIDES outperforms the SOTA methods by over 14\% in average with GPT-3.5-turbo, Gemini and Llama 70B series.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube