Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Classical algorithms for measurement-adaptive Gaussian circuits (2509.00746v1)

Published 31 Aug 2025 in quant-ph

Abstract: Gaussian building blocks are essential for photonic quantum information processing, and universality can be practically achieved by equipping Gaussian circuits with adaptive measurement and feedforward. The number of adaptive steps then provides a natural parameter for computational power. Rather than assessing power only through sampling problems -- the usual benchmark -- we follow the ongoing shift toward tasks of practical relevance and study the quantum mean-value problem, i.e., estimating observable expectation values that underpin simulation and variational algorithms. More specifically, we analyze bosonic circuits with adaptivity and prove that when the number of adaptive measurements is small, the mean-value problem admits efficient classical algorithms even if a large amount of non-Gaussian resources are present in the input state, whereas less constrained regimes are computationally hard. This yields a task-level contrast with sampling, where non-Gaussian ingredients alone often induce hardness, and provides a clean complexity boundary parameterized by the number of adaptive measurement-and-feedforward steps between classical simulability and quantum advantage. Beyond the main result, we introduce classical techniques -- including a generalization of Gurvits's second algorithm to arbitrary product inputs and Gaussian circuits -- for computing the marginal quantities needed by our estimators, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.