Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi Scale Analysis of Nifty 50 Return Characteristics Valuation Dynamics and Market Complexity 1990 to 2024 (2509.00697v1)

Published 31 Aug 2025 in q-fin.ST

Abstract: This study presents a unified, distribution-aware, and complexity-informed framework for understanding equity return dynamics in the Indian market, using 34 years (1990 to 2024) of Nifty 50 index data. Addressing a key gap in the literature, we demonstrate that the price to earnings ratio, as a valuation metric, may probabilistically map return distributions across investment horizons spanning from days to decades. Return profiles exhibit strong asymmetry. One-year returns show a 74 percent probability of gain, with a modal return of 10.67 percent and a reward-to-risk ratio exceeding 5. Over long horizons, modal CAGRs surpass 13 percent, while worst-case returns remain negative for up to ten years, defining a historical trapping period. This horizon shortens to six years in the post-1999 period, reflecting growing market resilience. Conditional analysis of the P/E ratio reveals regime-dependent outcomes. Low valuations (P/E less than 13) historically show zero probability of loss across all horizons, while high valuations (P/E greater than 27) correspond to unstable returns and extended breakeven periods. To uncover deeper structure, we apply tools from complexity science. Entropy, Hurst exponents, and Lyapunov indicators reveal weak persistence, long memory, and low-dimensional chaos. Information-theoretic metrics, including mutual information and transfer entropy, confirm a directional and predictive influence of valuation on future returns. These findings offer actionable insights for asset allocation, downside risk management, and long-term investment strategy in emerging markets. Our framework bridges valuation, conditional distributions, and nonlinear dynamics in a rigorous and practically relevant manner.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: