Federated Survival Analysis with Node-Level Differential Privacy: Private Kaplan-Meier Curves (2509.00615v1)
Abstract: We investigate how to calculate Kaplan-Meier survival curves across multiple health-care jurisdictions while protecting patient privacy with node-level differential privacy. Each site discloses its curve only once, adding Laplace noise whose scale is determined by the length of the common time grid; the server then averages the noisy curves, so the overall privacy budget remains unchanged. We benchmark four one-shot smoothing techniques: Discrete Cosine Transform, Haar Wavelet shrinkage, adaptive Total-Variation denoising, and a parametric Weibull fit on the NCCTG lung-cancer cohort under five privacy levels and three partition scenarios (uniform, moderately skewed, highly imbalanced). Total-Variation gives the best mean accuracy, whereas the frequency-domain smoothers offer stronger worst-case robustness and the Weibull model shows the most stable behaviour at the strictest privacy setting. Across all methods the released curves keep the empirical log-rank type-I error below fifteen percent for privacy budgets of 0.5 and higher, demonstrating that clinically useful survival information can be shared without iterative training or heavy cryptography.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.