Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Gray-Box Computed Torque Control for Differential-Drive Mobile Robot Tracking (2509.00571v1)

Published 30 Aug 2025 in cs.RO, cs.SY, and eess.SY

Abstract: This study presents a learning-based nonlinear algorithm for tracking control of differential-drive mobile robots. The Computed Torque Method (CTM) suffers from inaccurate knowledge of system parameters, while Deep Reinforcement Learning (DRL) algorithms are known for sample inefficiency and weak stability guarantees. The proposed method replaces the black-box policy network of a DRL agent with a gray-box Computed Torque Controller (CTC) to improve sample efficiency and ensure closed-loop stability. This approach enables finding an optimal set of controller parameters for an arbitrary reward function using only a few short learning episodes. The Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm is used for this purpose. Additionally, some controller parameters are constrained to lie within known value ranges, ensuring the RL agent learns physically plausible values. A technique is also applied to enforce a critically damped closed-loop time response. The controller's performance is evaluated on a differential-drive mobile robot simulated in the MuJoCo physics engine and compared against the raw CTC and a conventional kinematic controller.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube