Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Learning-based Control for Tendon-Driven Continuum Robotic Arms (2412.04829v2)

Published 6 Dec 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents a learning-based approach for centralized position control of Tendon Driven Continuum Robots (TDCRs) using Deep Reinforcement Learning (DRL), with a particular focus on the Sim-to-Real transfer of control policies. The proposed control method employs the Modified Transpose Jacobian (MTJ) control strategy, with its parameters optimally tuned using the Deep Deterministic Policy Gradient (DDPG) algorithm. Classical model-based controllers encounter significant challenges due to the inherent uncertainties and nonlinear dynamics of continuum robots. In contrast, model-free control strategies require efficient gain-tuning to handle diverse operational scenarios. This research aims to develop a model-free controller with performance comparable to model-based strategies by integrating an optimal adaptive gain-tuning system. Both simulations and real-world implementations demonstrate that the proposed method significantly enhances the trajectory-tracking performance of continuum robots independent of initial conditions and paths within the operational task-space, effectively establishing a task-free controller.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.