Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Entropy-based Coarse and Compressed Semantic Speech Representation Learning (2509.00503v1)

Published 30 Aug 2025 in cs.CL and eess.AS

Abstract: Discrete speech representation learning has recently attracted increasing interest in both acoustic and semantic modeling. Existing approaches typically encode 16 kHz waveforms into discrete tokens at a rate of 25 or 50 tokens per second. However, given that speech generally conveys only 2 to 5 words per second, such fine-grained tokenization introduces redundancy and hinders efficiency in downstream training and inference. Moreover, semantic speech representations at this frequency primarily capture phonetic-level information, while semantic understanding may not require such detailed token-level resolution. To address these limitations, we propose an entropy-based dynamic aggregation framework for learning compressed semantic speech representations. A speech LLM is first pre-trained via next-token prediction on large-scale unlabeled data to capture frequent token patterns. Predictive entropy is then used to adaptively determine aggregation boundaries, followed by a cross-attention module that fuses information within each segment. By adjusting the entropy threshold, the granularity and compression ratio of the representations can be flexibly controlled. Experiments on ASR, speech-to-text translation, and voice conversion tasks demonstrate that the compressed representations perform on par with or better than dense token sequences, demonstrating the effectiveness of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.