Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The $K(π, 1)$ conjecture for affine Artin groups (2509.00445v1)

Published 30 Aug 2025 in math.GR, math.AT, math.CO, and math.GT

Abstract: In this summary paper, we present the key ideas behind the recent proof of the $K(\pi, 1)$ conjecture for affine Artin groups, which states that complements of locally finite affine hyperplane arrangements with real equations and stable under orthogonal reflections are aspherical. We survey three facets of the argument: the combinatorics of noncrossing partition posets associated with Coxeter groups; the appearance of dual Artin groups and the question of their isomorphism with standard Artin groups; the topological models and their interplay in the proof.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.