GIER: Gap-Driven Self-Refinement for Large Language Models
Abstract: We introduce GIER (Gap-driven Iterative Enhancement of Responses), a general framework for improving LLM outputs through self-reflection and revision based on conceptual quality criteria. Unlike prompting strategies that rely on demonstrations, examples, or chain-of-thought templates, GIER utilizes natural language descriptions of reasoning gaps, and prompts a model to iteratively critique and refine its own outputs to better satisfy these criteria. Across three reasoning-intensive tasks (SciFact, PrivacyQA, and e-SNLI) and four LLMs (GPT-4.1, GPT-4o Mini, Gemini 1.5 Pro, and Llama 3.3 70B), GIER improves rationale quality, grounding, and reasoning alignment without degrading task accuracy. Our analysis demonstrates that models can not only interpret abstract conceptual gaps but also translate them into concrete reasoning improvements.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.