Papers
Topics
Authors
Recent
2000 character limit reached

TReF-6: Inferring Task-Relevant Frames from a Single Demonstration for One-Shot Skill Generalization (2509.00310v1)

Published 30 Aug 2025 in cs.RO and cs.AI

Abstract: Robots often struggle to generalize from a single demonstration due to the lack of a transferable and interpretable spatial representation. In this work, we introduce TReF-6, a method that infers a simplified, abstracted 6DoF Task-Relevant Frame from a single trajectory. Our approach identifies an influence point purely from the trajectory geometry to define the origin for a local frame, which serves as a reference for parameterizing a Dynamic Movement Primitive (DMP). This influence point captures the task's spatial structure, extending the standard DMP formulation beyond start-goal imitation. The inferred frame is semantically grounded via a vision-LLM and localized in novel scenes by Grounded-SAM, enabling functionally consistent skill generalization. We validate TReF-6 in simulation and demonstrate robustness to trajectory noise. We further deploy an end-to-end pipeline on real-world manipulation tasks, showing that TReF-6 supports one-shot imitation learning that preserves task intent across diverse object configurations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.