Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Feature Augmentations for High-Dimensional Learning (2509.00232v1)

Published 29 Aug 2025 in stat.AP and stat.ML

Abstract: High-dimensional measurements are often correlated which motivates their approximation by factor models. This holds also true when features are engineered via low-dimensional interactions or kernel tricks. This often results in over parametrization and requires a fast dimensionality reduction. We propose a simple technique to enhance the performance of supervised learning algorithms by augmenting features with factors extracted from design matrices and their transformations. This is implemented by using the factors and idiosyncratic residuals which significantly weaken the correlations between input variables and hence increase the interpretability of learning algorithms and numerical stability. Extensive experiments on various algorithms and real-world data in diverse fields are carried out, among which we put special emphasis on the stock return prediction problem with Chinese financial news data due to the increasing interest in NLP problems in financial studies. We verify the capability of the proposed feature augmentation approach to boost overall prediction performance with the same algorithm. The approach bridges a gap in research that has been overlooked in previous studies, which focus either on collecting additional data or constructing more powerful algorithms, whereas our method lies in between these two directions using a simple PCA augmentation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube