T-MLP: Tailed Multi-Layer Perceptron for Level-of-Detail Signal Representation (2509.00066v1)
Abstract: Level-of-detail (LoD) representation is critical for efficiently modeling and transmitting various types of signals, such as images and 3D shapes. In this work, we present a novel neural architecture that supports LoD signal representation. Our architecture is based on an elaborate modification of the widely used Multi-Layer Perceptron (MLP), which inherently operates at a single scale and therefore lacks native support for LoD. Specifically, we introduce the Tailed Multi-Layer Perceptron (T-MLP) that extends the MLP by attaching multiple output branches, also called tails, to its hidden layers, enabling direct supervision at multiple depths. Our loss formulation and training strategy allow each hidden layer to effectively learn a target signal at a specific LoD, thus enabling multi-scale modeling. Extensive experimental results show that our T-MLP outperforms other neural LoD baselines across a variety of signal representation tasks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.