MoE-Health: A Mixture of Experts Framework for Robust Multimodal Healthcare Prediction (2508.21793v1)
Abstract: Healthcare systems generate diverse multimodal data, including Electronic Health Records (EHR), clinical notes, and medical images. Effectively leveraging this data for clinical prediction is challenging, particularly as real-world samples often present with varied or incomplete modalities. Existing approaches typically require complete modality data or rely on manual selection strategies, limiting their applicability in real-world clinical settings where data availability varies across patients and institutions. To address these limitations, we propose MoE-Health, a novel Mixture of Experts framework designed for robust multimodal fusion in healthcare prediction. MoE-Health architecture is specifically developed to handle samples with differing modalities and improve performance on critical clinical tasks. By leveraging specialized expert networks and a dynamic gating mechanism, our approach dynamically selects and combines relevant experts based on available data modalities, enabling flexible adaptation to varying data availability scenarios. We evaluate MoE-Health on the MIMIC-IV dataset across three critical clinical prediction tasks: in-hospital mortality prediction, long length of stay, and hospital readmission prediction. Experimental results demonstrate that MoE-Health achieves superior performance compared to existing multimodal fusion methods while maintaining robustness across different modality availability patterns. The framework effectively integrates multimodal information, offering improved predictive performance and robustness in handling heterogeneous and incomplete healthcare data, making it particularly suitable for deployment in diverse healthcare environments with heterogeneous data availability.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.