Is this chart lying to me? Automating the detection of misleading visualizations (2508.21675v1)
Abstract: Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal LLMs (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also release Misviz-synth, a synthetic dataset of 81,814 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and fine-tuned classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.