Papers
Topics
Authors
Recent
2000 character limit reached

Predicting Social Media Engagement from Emotional and Temporal Features (2508.21650v1)

Published 29 Aug 2025 in cs.LG

Abstract: We present a machine learning approach for predicting social media engagement (comments and likes) from emotional and temporal features. The dataset contains 600 songs with annotations for valence, arousal, and related sentiment metrics. A multi target regression model based on HistGradientBoostingRegressor is trained on log transformed engagement ratios to address skewed targets. Performance is evaluated with both a custom order of magnitude accuracy and standard regression metrics, including the coefficient of determination (R2). Results show that emotional and temporal metadata, together with existing view counts, predict future engagement effectively. The model attains R2 = 0.98 for likes but only R2 = 0.41 for comments. This gap indicates that likes are largely driven by readily captured affective and exposure signals, whereas comments depend on additional factors not represented in the current feature set.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.